

CMSC 201 – Computer Science I for Majors Page 1

CMSC 201 Fall 2015
Lab 03 – A Simple Program

Assignment: Lab 03 – A Simple Program
Due Date: During discussion, September 14th through September 17th
Value: 1% of final grade

This week’s lab is in-person with your TA. They’ll briefly cover some of the
material learned in class, including variables, expressions, and user input.
(Having concepts explained in a new and different way can often lead to a
better understanding, so please pay attention.)

CMSC 201 – Computer Science I for Majors Page 2

Part 1: Review – Variables

A variable is how we store information in our Python programs. In simple
terms, you can think of a variable as a “box” that you can put stuff in. The
“stuff” we place in the box is then the value of the variable.

For example, we can create a variable called classSize, and set its value

to be 20. To express this in Python code, we would write
 classSize = 20

We’ve discussed many different types of variables in class, but today we’ll
focus on three of them: strings, ints, and floats.

 A string is a collection (or “string”) of characters. You already used a
string in Lab 1, when you wrote

 print("Hello world! I am Jane Doe")

Strings can be nearly anything, and are specified through the use of
quotation marks. The following examples are all valid strings:

o "3.14"
o "True"
o "201"
o "Goodbye cruel world!"
o "This is the song that doesn't end..."

 The word int stands for “integer,” which is a number that can be written
without a decimal or a fractional part. The numbers -8, 16, 50, -8674,

and 1000000000 are all examples of an integer.

 A float is also a type of number – a “floating point number.” In contrast
with integers, floats are numbers that contain a decimal point. This
includes “whole” numbers, where the value following the decimal is
zero. The numbers -7.2, 6.0, 5.007, -84.5, and 1.0000000005

are all examples of a float.

CMSC 201 – Computer Science I for Majors Page 3

Using variables in Python is easy! There are just two important rules we have
to remember:

1. Use meaningful variable names! For example, numberOfBooks is a

much better variable name than NOB or numb or x.

2. Before we can use a variable, it must be initialized. In other words, we
have to put a value into the “box” before we can start using the variable.
We do this using the assignment operator, or equal sign (=). For

example:
booksPerShelf = 50

numberOfShelves = 22

sizeOfLibrary = booksPerShelf * numberOfShelves

We had to initialize the value of the variables booksPerShelf and

numberOfShelves before we could use them to calculate the size of

the library.

Here are some more examples of variables:

address = "1000 Hilltop Circle"

biggestDinosaur = "Argentinosaurus"

ageOfEarth = 4543000000

minimumWageMD = 8.25

CMSC 201 – Computer Science I for Majors Page 4

Part 2: Review – Expressions

An expression is code that calculates or produces new data and data values.
Expressions are what allow us to create interesting Python programs. The
word “expression” is really just a fancy name for something that can be
evaluated to a single value.

One important thing to remember is that expressions must always be on
the right hand side of the assignment operator!

Right now, we will use expressions in Python mostly for mathematical
equations. For example, if we want to find the addition of two numbers in
Python, we could write code like this:

sum1 = 15 + 42

Our expression is “15 + 42” which evaluates to 57. This result is stored in

the variable sum1 – in other words, the value inside the box labeled “sum1”

is now 57.

We could have achieved the same thing with the following code:

num1 = 15

num2 = 42

sum1 = num1 + num2

Even though we used the variables num1 and num2 to hold the values 15

and 42, the expression still evaluates to 57, and that value is still stored in
sum1.

Here are a few more examples of expressions:

numStudents = 500

totalPrice = numCookies * priceOfCookie

numHours = numDays * 24

triArea = (1/2) * triBase * triHeight

CMSC 201 – Computer Science I for Majors Page 5

Part 3: Review – User Input (and Casting)

User input is a way to get information from the user after you've finished
writing your program. Much like expressions, user input is part of creating
Python programs that do interesting things.

The Python code you need to use in order to get input from the user will look
something like this:

userName = input("Enter your name please: ")

When your program is run, this will print out the message "Enter your

name please: " to the screen. After the user enters their answer and

presses enter, the text that they entered will be stored as the value of
userName.

Casting
However, even if we ask for an integer and the user enters one, the value will
be stored as a string instead. We can’t do addition or multiplication like we
might want to with a string – Python treats ints and strings differently.

We can fix this by telling the program that the input is actually an integer.
Doing this is called casting, a process that changes a variable from one type
to another. For example, if we want to convert the user’s age to an integer,
we could write something like this:

userAge = int(input("Enter your age please: "))

If we wanted their GPA (which would be a float, and not an integer) we could
write something like this:

userGPA = float(input("Enter your GPA please: "))

CMSC 201 – Computer Science I for Majors Page 6

Part 4A: Exercise: Miles per Gallon Calculator

In this lab, you’ll be creating a Python program completely from scratch. The
problem you’ll be solving today is calculating a car’s MPG (miles per gallon).

Before you start programming, think about what you need as input, what you
plan to output, and what process you’ll use to get from input to output.

CMSC 201 – Computer Science I for Majors Page 7

Part 4B: Input and Process

To determine a car's MPG you only need two things:

1. The distance the car traveled in one trip (e.g., 250 miles)
2. The amount of gas used for that trip (e.g., 10 gallons)

The formula to calculate the MPG is simple: divide the distance traveled by
the number of gallons used. Using the example numbers given above, we
would get 25 miles per gallon.

CMSC 201 – Computer Science I for Majors Page 8

Part 4C: Writing your Program

After logging into GL, navigate to the Labs folder inside your 201 folder.

Create a folder there called lab3, and go inside the newly created lab3

directory.

linux2[1]% cd 201

linux2[2]% cd Labs

linux2[3]% pwd

/afs/umbc.edu/users/k/k/k38/home/201/Labs

linux2[4]% mkdir lab3

linux2[5]% cd lab3

linux2[6]% pwd

/afs/umbc.edu/users/k/k/k38/home/201/Labs/lab3

linux2[7]% █

Now you are going to write a simple Python program called calculateMPG.py.

To open your file for editing, type
 emacs calculateMPG.py &

and hit enter. (The ampersand at the end of the line is important – without it,
your terminal will “freeze” until you close the emacs window. Do not include
the ampersand if you are not on a lab computer.)

The first thing you should do in your new file is create and fill out the
comment header block at the top of your file. Here is a template:

File: calculateMPG.py

Author: YOUR NAME

Date: TODAY'S DATE

Section: YOUR SECTION NUMBER

E-mail: USERNAME@umbc.edu

Description: YOUR DESCRIPTION GOES HERE AND HERE

YOUR DESCRIPTION CONTINUED SOME MORE

CMSC 201 – Computer Science I for Majors Page 9

After this, you can start writing code. First, you need to get input from the
user for the distance the car traveled and the amount of gas used. Make
sure you:

 Assign the results of the input to variables

 Give the variables meaningful names

 Cast the input to int (otherwise they’ll be strings)

Once you have both of these variables, you can use them to calculate the
car’s miles per gallon, and assign the results to a third variable. After that, all
you need to do is display the MPG and you’re done!

To test your program, first enable Python 3, then run it with the python

command:

linux2[7]% /usr/bin/scl enable python33 bash

bash-4.1$ python calculateMPG.py

Please enter the distance traveled (in miles): 190

Please enter the gallons used: 8

The MPG is: 23.75

bash-4.1$ █

CMSC 201 – Computer Science I for Majors Page 10

Part 5: Completing Your Lab

Since this is an in-person lab, you do not need to use the submit command

to complete your lab. Instead, raise your hand to let your TA know that you
are finished.

They will come over and check your work – they may ask you to run your
program for them, and they may also want to see your code. Once they’ve
checked your work, they’ll give you a score for the lab, and you are free to
leave.

IMPORTANT: If you leave the lab without the TA checking
your work, you will receive a zero for this week’s lab. Make
sure you have been given a grade before you leave!

